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Abstract

The behavior of multi-dimensional discrete Boltzmann systems with highly oscillatory data is
studied. Homogenized equations for the mean solutions are obtained. Uniform convergence of the
oscillatory solutions of the discrete Boltzmann equations to the solutions of the corresponding
homogenized equations is established. Moreover, we find that the weak limits of the oscillatory
solutions for a model of Broadwell type are not continuous functions of the discrete velocities.
Generalization of the above results to problems with multiple-scale initial data is also established.
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1. Introduction

One of the essential problems in nonlinear partial differential equations is to
understand how the behavior in the microscopic level affects the behavior in the
macroscopic level. One approach is to find the corresponding effective or ho-
mogenized equations which determine the weak limits of the oscillatory solutions
(see [3]), Such homogenization results are important both for the understanding
of the nonlinear interaction between the high frequencies and for the study of the
numerical approximation for problems with oscillatory solutions (see [71, [81,[9]).

We choose to study the nonlinear discrete Boltzmann equations in kinetic
theory of discrete velocity. In such equations, high frequency components can be
transformed into lower frequencies through nonlinear interaction, thus affecting
the average of solutions. In this paper, we study the homogenization theory of the
discrete Boltzmann equations in multi-dimensional space and with finitely many
real-valued velocities (see equations (4.1)). We assume that the initial values are
of the form a(x, x/e) with a(x, y) 1-periodic in each component of y. Our
results show that the behavior of oscillatory solutions for a model of Broadwell
type (see equations (2.1)) is very sensitive to the velocity coefficients. It depends
on whether a certain ratio among the velocity components is a rational number or
an irrational number. Furthermore we find that the form of homogenized
equations depends on the velocity coefficients, and the weak limits of the
oscillatory solutions are not continuous in the velocity components. This singular
behavior for a model of Broadwell type is not shared by the simple Carleman
model (see equations (3.1)).

Our study also shows that the structure of oscillatory solutions for a model of
Broadwell type is quite stable (in the sense of Theorem 2.3) when we perturb
velocity coefficients around irrational numbers. In this case, the resonance effect
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of u and v on w vanishes in the limit of e - 0. However, the behavior of
oscillatory solutions for a model of Broadwell type becomes singular when
perturbing around integer velocity coefficients. There is a strong interaction
between the high frequency components of u and v, and the interaction in the u,
v term would create oscillation of order 0(1) on the w component even in the
limit as - - 0. In [141, Tartar showed that for the Carleman model the weak
limits of all powers of the initial oscillatory data will uniquely determine the
weak limits of the oscillatory solutions at later time. We found that this is no
longer true for a model of Broadwell type with integer-valued velocity coeffi-
cients.

The homogenization theory of the Carleman and Broadwell models with
oscillatory initial data has been studied by McLaughlin, Papanicolaou and Tartar
[111. They proved that the oscillatory solutions of the Carleman and Broadwell
models converge strong'y in LP-norm, p -- oo, to the solutions of the corre-
sponding homogenized equations. By using certain ergodicity property of the
oscillatory solutions and taking into account cancellations among high frequency
components, we are able to obtain homogenization results for more general
discrete Boltzmann equations. Moreover we establish uniform convergence of the
oscillatory solutions to the solutions of the corresponding homogenized equa-
tions. This uniform convergence result is essential in the convergence analysis of
particle methods for the discrete Boltzmann equations (see [7], [81, [9]).

The paper is organized as follows. In Section 2, we study a model of
Broadwell type in detail and compare the homogenization results with those for
the Carleman model. Section 3 contains homogenization results for the problems
in which the initial data are of more than two scales. In Section 4, we extend the
results of Section 2 to the discrete Boltzmann equations in multi-dimensional
space with finitely many velocities.

2. Behavior of Oscillatory Solutions in the Model of Broadwell Type

The Broadwell model describes a three-dimensional model of rarefied gas in
which particles travel with speed c in either direction along a coordinate axis (see
[4]). If particles traveling in opposite directions collide, they are equally likely to
move in each of the three coordinate directions after collision, with velocities of
opposite sign. Other collisions can lead to an exchange of velocities. We denote
by N (x, y, z, t) the number density of particles with velocity (c, 0, 0); a similar
notation is used for NT, N2± and N3±. Then the resulting equations are

dN c 3 1 1

+N = Io(N N+N NV2N+N),at l = - (N2N + N N-- 2N;NT),

etc., where o is the frequency of collision.

I . • mmmmm mmmmm~m -
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Here we consider the special case of one-dimensional motions in which the
N's are independent of y, z, and furthermore N2+= N2- N3= N-. Setting
N = u(x, t), N1-= v(x, t), N2= w(x, t) and rescaling the variables so that
c = 1, a =, we then obtain the 1-D Broadwell equations

- + U V- =0,

at dv2
Ot -x + UVt- W = 0 ,

dw - n + w
2 
= O.

di

A lot of effort has been made in obtaining global solutions for the discrete
Boltzmann equations. For the 1-D Broadwell model, Nishida and Mimura [12]
first showed that a global solution exists when the initial values are small in some
sense. Their result has been generalized to more general 1-D discrete Boltzmann
equations by Crandali and Tartar [13], Cabannes [5], Illner [101 and Beale [2],
among others.

To study how oscillatory solutions depend on velocity coefficients, we intro-
duce an additional term a dw/dx, jal < 1, in the last equation of the Broadwell
model. We get

du du 2
(2.1a) - + Tx + .V - W O,

d v dv 2

(2.1b)t - x - + uv - =0,

dw dw
(2.1c) Ft + a--x - uv + w2  O.

We refer to equations (2.la-c) as a model of Broadwell type. Suppose in
addition that initial values are given by

(2.2) u(x,0) = ua (x .X, v(x,0) = VO (X, X ), W (x,O) = W (. X ,

where we assume that uo(x, y), vo(x, y) and wo(x, y) are 1-periodic in y.
We denote by u,, v, and w, the solutions of equations (2.1) and (2.2).
The behavior of solutions u , v, and w, as e -- 0 is very sensitive to the

coefficient a. This is described by the following homogenization result.

Iaalability Codesr-Avail and/or
Dist Special
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Case I: a = m/n (m and n mutually prime); the homogenized equations for
(2.la-c) are

(2.3a) -u + a + UI Vdy- =W2dy =0,
(2.3b OV O foly folW

(23b dV xd + V IUy- 1Wdy = 0,

W dW w2

at dx
(2.3c)

_n YU(x,y + (n - 1)Z t)V(x Y + + 1)z, t) dz 0.

If m = 0, then n = 1 in (2.3c).
Case II: a is an irrational number; the homogenized equations become

(2.4a) dU +dU U Vdy f 1 y

(2.4b) V VI Udy - foW2dy O,t _T + V d-

(2.4c) dW + a + W 2 _ 1oU(x, y, t) dy) 1V(x, y, t) dy= 0.

The initial data in both cases are given by

U(x, y,0) = u0 (x, y), V(x, y,0) = Vo(X, y),
(2.5)

W(x, y,0) = Wo(X, y).

Here we have assumed that smooth and bounded global solutions of (2.3a-c)
and (2.4a-c) exist up to time T.

THEOREM 2.1. For smooth and bounded non-negative initial data, the solutions
of (2.1a-c) and (2.2) converge to those of the corresponding homogenized equations
strongly in the L'-norm,

u,(x, t) - U(x , X t- ,t -- 0 as E -- 0,

v,( x, t ) - V( x, --X -+, tt -0 as E - 0,

v(x,t)- W~x,X t,t)/ as_

W'(X t)- W(X, ,,0as e-~0 for O: t 5T.



HOMOGENIZATION FOR SEMILINEAR HYPERBOLIC SYSTEMS 475

Remark 2.1. The homogenization result above can be generalized to the case
when uo(x, y), v0 (x, y) and wo(x, y) are periodic functions in y with arbitrary
periods.

Remark 2.2. In the case when a = 0, our homogenization result is the same
as that obtained in [11]. The only difference is that we obtain uniform conver-
gence instead of convergence in L-norm, p < oo, of [11].

Remark 2.3. The local existence result of the homogenized equations (2.3) or
(2.4) can be obtained by classical analysis for smooth and bounded non-negative
initial data. The global existence result for the homogenized equations then
follow by combining the known global existence results for (2.1)-(2.2) (e.g. [10])
with Theorem 2.1. Therefore the value of T in Theorem 2.1 is arbitrarily large.

LE_ A 2.1. Let f(x), g(x, y) E C'. Assume further that g(x, y) is n-peri-
odic in y and satisfies the relation fo'g(x, y) dy = 0. Then for any constants a and b,
we have

a af(X)g( x, X) dx CE.

Proof: Express g(x, x/e) as
g~xx ) Jd g(x, ~)ds d (yx, ) ds.

(2.6) gWx g) f a xd-

Since, for any real number d,

fdd+n y) dy = 0d d+n (X,Y)dy 0,
dd gx ) y-O

we conclude that

j b !) ds CE, ds __ C E.

From this, we deduce that

b(x)g(x :) d

- bal If(b ( , )d- S( (, )) df(X) dx

This completes the proof of the lemma.
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LEMMA 2.2. Suppose that f(x, y, z) is continuous. Moreover, we assume that f
is 1-periodic in y and z. If y2l/'y is an irrational number, then we have

b.a(f (X X,+ Y fjIfX + Y2X Iz xyz) d x d A C(c) - 0,

as e -- 0 for any constants a, b, x1 and x 2.

Proof: We assume for simplicity that f has been normalized so that

fo1 foI f ( x, y, z) dydz = 0.
0

We first prove the lemma in the case when f(x, y, z) is independent of the first
variable x. By change of variables, we can further reduce the problem to showing
that

STf(xx,2 + Ax)dx -0 as T--oo,

where X = y2/y, is an irrational number, T = y1(b - a)/e, x1,2 = (x 2 - x )/e.
We need only to show this for integer-valued T. Note that

J NJNx f 1 I
J x, X1.2 + Xx) dx = f (X, x 1 2 + Xx) dx

(2.7)

1
= 'Y x 1 + nX + Xx) dx.

0

Define

F(y) -ff(x, y + Xx) dx.

Then F(y) is a 1-periodic continuous function. Applying the well-known theo-
rem of equipartition modulo 1 (Bohl-Serpinskii-Weyl) of ergodic theory (see [1]),
we obtain

1 N- iflFy)dy-, asN-
(2.8) - F(x 1 ,2 + nA)-jF(y)dy 0 as N

independently of the value of xl, 2. By interchanging the order of integration, we

get

o'F(y) dy = fo ff (y, z) dy dz = 0.
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Thus (2.7) and (2.8) yield

(2.9) l ff(f( x
l 
+ y l x 

IX2W+"72X dx-O as e-0.
(2.9) b- a , e e

For the case where f depends on its first variable, we have, in light of (2.6),

1 a fb(j .x x 2 + y2 X) dxb-a f"fx, E

I b, ,1+' X 2
(2.10) f a I

1 fb((xadf (X x + Yls X2 +Y 2 S\ 1

b-a a ax e ' e

Note that df(x, y, z)/dx is 1-periodic in the y and z variables, and satisfies

xo(x, y, z) dydz= fjof(x y, z)dydz=,

by the assumption on f(x, y, z). Applying (2.9) to the integrals with respect to ds
on the right-hand side of (2.10), we obtain

Ib J2A ,' xi+YXI 2+Y dx - 0 as e - 0.b- a f , ,

This completes the proof of Lemma 2.2.

Proof of Theorem 2.1: We only give the proof for the case when a is an
irrational number. The case when a = m/n follows similarly by using Lemma
2.1. Subtracting equation (2.4c) from equation (2.1c) and integrating the resulting
equation along their characteristics from 0 to t, we obtain

w,(x, t) - W(x , e , t

-'(W(X -a (t - s), s) 2 _ W(x - a( - S). x - at S)2)

(2.11) + T(x, t) + fU,(X - a(t - s), s)v,(x - a(t - s), s) ds
0

- fo'~x - .t- s), (x - at) + (a - 1)s,

SV(x - a(t - s), (xS- +(a+
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where T(x, t) is defined by

V(x, t) = f (x - a(t - s), x - at + ( s

.• Vx-a(t-s), x  at+ ds
E E

- fo(foU(x - a(t - s), z, s) dz)(f V(x - a(t - s), y, s) dy) ds.

For fixed x and t, define A M (a + 1)/(a - 1) and

f(s, y, z) = U(x - a(t - s), y, s)V(x - a(t - s), z, s),

X 1 =X 2 = X- a t, y1 =a-, 2 =a+ 1.

Then the T(x, t) term in (2.11) becomes

j'(SsI X, + Y X2 + Y2 S) f (s, y, z) dydz ds,

which is bounded uniformly by C(Le) by Lemma 2.2.
Define

M = sup (sup {lu(xt, 'lU(x,y' ,),...,lW(x, y,t01)
Ogt.T x, y

We deduce from (2.11) that

(2.12)

w,(, t)- W (x, X - at,) 2MftG(x - a(t - s), s) ds +C

where G(x, t) is defined by

G(x, t) = u,(x, t) - U x, x - , t) + IV(x, t) - V(x x + t, t

(2.13)

+ IW(X, t) - W(x, X - att)
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Similarly, we obtain

(2.14) u,(x, t) - U x X 2MJIG(x - i + s, s) ds + C(E),
I ( x tt<2fot~~ -~~ s  ~ )

(2.15) v'(x, t) - V( x + 1) t) 2Mf'G(x + t - s, s) ds + C(E).
E0

Adding (2.12), (2.14) and (2.15) yields

G(x, t) < 2Mf'(G(x - t + s, s)

(2.16) +G(x + t - s, s)

+G(x - a(t - s), s)) ds + 3C(e).

Define

E(t) = sup {G(x,t)}.
X

It follows immediately from (2.16) that

(2.17) E(t) < 6Mf'E(s) ds + 3C(e).

Application of the Gronwall inequality to (2.17) then proves the theorem.

Suppose that w0 is y independent. The oscillation of u and c will create
oscillations on w at later time. The homogenized equation (2.3c) indicates that w
remains oscillatory as e - 0 if a is rational. However, if a is an irrational
number, (2.4c) implies that W(x, y, t) is y independent. Thus we expect that
there is some kind of singularity in the high-order powers of solutions. Since the
equations are nonlinear, such a singularity would affect the local average of
solutions. This is described by the following theorem.

THEOREM 2.2. Let a0 = m/n. Assume w(x,0) = wo(x) and

jfl( X y + Z )zV ,(x, y + + 1)z) d: 0 0.

Then at least one of the following limits does not hold as a - a,:

'U dy -- fU odY, f'V dy flV, dY, fIW. dy -- fIW, dv,

where U., V. and W are solutions of equations (2.3) or (2.4).
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Proof: It can be shown that

1--ffU*0 (x Y + -m )z, t) Vao(X, y + + 1) z, t) dz dy

= (j'. d)(j t d,)•

Let U(m) - fJUmdy. For irrational a, we first integrate equation (2.3c) corre-
sponding to a o and equation (2.4c) corresponding to a in y from 0 to I and then
integrate from 0 to t along their characteristics, respectively. The difference of the
resulting equations gives

Wj')(x, t) - W1o)(X, t) + fPwo(x - a0t, y) - wo(x - at, y)) dy

(2.18) + f o V  - U.)V' ) ds

= -fo(W2)(x - a(t - s), s) - W2)(X - ao(t - s), s))ds.

Since W,(x, y, 0) is y-independent, W,( x, y, t) is independent of y for irrational
a according to equation (2.4c). Thus W22 = (W2 )2 . On the other hand, the
assumption on u0 , v0 and equation (2.3c) imply that W, 0(x, y, t) is a nontrivial
function of y at least in some interval [0, t] with t, > 0. Thus we have

J"(W2) - W s2 = - (" ) 2) ds

0 0 W(

(2.19)
- a ( +))) d

Since Wo(x, y, t) is not independent of y, Schwartz's inequality yields

) (W1) 2 
> 0.

Therefore the last term on the right of (2.19) is a non-zero function independent
of a. Consequently,

U (1) __,o,,, V Vao  W as a - ao ,

would contradict (2.18) and (2.19). This completes the proof of Theorem 2.2.

The situation for a0 irrational is quite different. Weinan E and I can show
that the solution is 'structurally stable' near a0 in the following sense.
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THEOREM 2.3. Suppose that solutions U0(x, -, t) and V,(x, ., i) of (2.3) or
(2.4) belong to C 2. If a0 is an irrational number, then solutions UJ., V. and W. of
(2.3) or (2.4) are continuous functions of a at a0 . Moreover, for anyv positic . e
integer m, we have

jim" f U0 (X. y, () m dy =f'U0 (x. IV, tr )"dv,
a-ao 0

lirn f V. (X, Y,t)mdv =J'p(XY, t) 0,V,

urn( Jf4/(x,YI, t)m4yv= fI4K~(x, Yt)md V.
a-a 0 0

Proof: Case 1: a -~ a0 and a = rnn. We assume that 0 < Ia,1 < 1. and
that m and n are mutually -,rime with n > 0. Since a, is an irrational number.
clearly we have lim, ,,n(a) = o0.

Define the function H(x, y, t) by

H(x. y, t) I n u.X y + m- 1) Z. t)V 0 (x. J, + 17+ I)Z, t) d:

- (f jU 0 (x. y, t) dv)(f V,(X .i', t) 41,).

We first show that tim,, H(x. y, t) = 0. Since U,,(x, v. t) and V"0(x. v, n are
1-periodic functions in y, we can expand UJ, and V,, by their Fourier Series. We
get

H =ff( akeXP{'2iTik() + (rn/n - 1):f)
n fok ; 0

(2.20) (Y_ b,exp{27ril(y + (rn/n + l):)}) d:.
/*0

It can be shown that a 2U. is bounded independently of a. Therefore, we have

lakI c(/k 2 ) and

Y_ akexp{27ik(y + (rn/n - 1)z)} 5 (In.

Similarly, we have

Y_ b,exp(21ri/(y + (rn/n + 1):)) < C/11.
11[>n13

On the other hand, note that, for 0 < Ikj ! 'n, 0 < Il II.

(2.21) k(m/n - 1) + l(rn/n + 1) * 0.



482 T. Y. HOU

Suppose otherwise. We then get m/n = (k - /)/(k + I). But k + I1  2,i < n.
r) < n, which contradicts the assumption that m "nd n dre mutually prime.

As a result of (2.21), we can easily show b\ interchanging the order of
integration and summation that

nfn(akexp(21rik( y + (rn,'n - 1):))

(0 <n/3 bexp{27ril(y + (m/n + l)z)1) dz = 0.

Therefore we have proven that lim,-.H(x, y. t) = 0 by showing that

(2.22) IH(x, y, t)f < C/n,

where C is independent of a.
Integrate equation (2.4c) corresponding to a0 and equation (2.3c) correspond-

ing to a from 0 to t along their characteristics, respectively. The difference of the
resulting equations gives

W(x, v.) - W,(x..) 0= "(x - at, v.) - w(x - a(t.y)

+ f (x - a(I - s),. )' )( 1V(x - (t - s). .s) dv ds

(2.23) - x(,( - a,(t - s), y, s) d V (x - a((t - S), _)dv ds

+ f'H(x - ,(t -s), , s ) ds

" j t (W,,(x - )(t - s), vs)2 - w,(x - a(t - s). y.s)) ds.

Define

G(x, t) -= IU.((x, ,, t) - LJ (x + / III-(,,) + ±,(x, . t x, 'Vx , .

+IIW,(x, , t) - Wo(x. ,
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Since U,, V. and W. are bounded and uo, vo and wo have bounded partial
derivatives, we can show that

IW.(x, y' t) - Wo(x, y, t) < 2M ftG(x - a(t - s), t) ds
(2.24) 0

+ C/n + CIa - a0l.

Similarly, we have

IU.(x, yt) Y,- ( )I
(2.25)
(.< 2Mj'G(x - (t - s), t) ds + C/n + Cla-aol,!0

(2.26 Va(x., y) - Vo,,(x, yt)
i (2.26)

S2Mf'G(x + (t - s), t) ds + C/n + Cla - a0l.

Define E(t) = sup, G(x, t). Adding (2.24), (2.25) and (2.26) yields

(2.27) E(t) <= 6Mf'E(s) ds + 3C/n + 3Cla - a0l.

The Gronwall inequality then implies the theorem for Case 1.

Case 2: a is an irrational number. In this case the homogenized equations
corresponding to a and a0 are of the same form (2.4). The proof is identical to
the second step in the Case I beginning from (2.22). Hence the proof of Theorem
2.3 is complete.

The proof of Theorem 2.3 contains the following result.

THEOREM 2.4. If a, = m/n and n >> 1, then there exists 8(n) > 0 such that,
for la - a0I < S(n),

U.(x, y, t)' dy - IU .(X, t)k dy 0 + A(a-ao).

Similar expressions hold for V and W. Here A(S) -- 0 as 8 - 0. and k is any
positive integer.

The following theorcm tells us how the structure of oscillatory initial da i

affects the higher-order powers of solutions in the future. For the Carleman
model, Tartar [14] has shown that the weak limits of u,(x, t)" are uniquely
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determined by the weak limits of u,(xO)k for all k. For a model of Broadwell
type, we show that this is true only if a is an irrational number.

THEOREM 2.5. Case 1: a is an irrational number. Assume {U,, 1', W,} and
(U,1 V, Wh } are two different solutions of system (24). Then we have

(2.28a) f U,(x• y, t) dy = (X, V, d ,

(2.28b) V,• yV, t) 4Y = fV(x, Y, t) d,

(2.28c) fWa(x, y, t) dy = JWb(x, t)dy,

for all integer m > 1 and 0 < t < Tprovided that (2.28a), (2.28b) and (2.28c) are

valid at t = 0 for all integer m > 1.
Case If: a is a rational number. Let (U, Vo, Wa)} and (U". V,. K},,) be two

different solutions of system (2.3). Then (2.28a), (2.28b) and (2.28c) may not be
true in general for all integer m > 1 and 0 < t T even if (2.28a), (2.28b) and
(2.28c) are valid at t = 0 for all integer m > 1.

Proof: Case I: We follow closely the proof given by Tartar in [14].
Throughout the proof we shall use the notation U(m )(x• t) = fjU(x, y. t" d.
For irrational a, one could easily derive equations for ( "" V("') and W,'') as
follows:

(2.29a) "t + aV + m Um)VJI) M mU" ) "W' 0.

(2.29b) d _ + mVOWQm  " ", 1)"', 0

d Wt a I 0

(2.29c) t + a a + mm'' ."- m '(1) w"' 1)= 0:

U''), V,,'- ' and W,(m) satisfy the same equations (2.29a-c).
From the global existence results [12],[131 and 12], we know that there exists a

constant Mo such that solutions U, 'i ,. ., W, are bounded by M. Define

8,,(t) = sup M7- Pmax(IiUaP)( • , s) - U S)II,.

(2 .30 ) iV(P)( , s) - V b(P)(o, s)II ' -

IfWK'(." s)- w Pl(. -s),I).

IL
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We obtain from (2.29c)

+ (W.( -  wl,(- )

(2.31) - - +M(U"l - Ubi))V'i)Wim1)

+ m U(l)-(V(l) Vb(l)) Wa(, - l)

+ M ,")V)(w--)- WWa -

The right-hand side of (2.31), denoted by h(x, t), is bounded by

IIh(-, t)1L- _- m 8,,+1(t) + 2mMo"8l(t) + mMg6,n_,(t) < 4m 8,,, 1(t).

By the assumption of Theorem 2.5, W(m)(xO) = W m ( x, O). Integration of
(2.31) along its characteristic line will give

1lw,,(,n)(.,/t) - wb(- (-, t l - 4m fo t S., I(s) ds.

Moreover one can show that, for 1 < p < m,

M ,-PIIW ) L 4m'8.,m 1(s) ds.

A similar result applies to the U and V components. Thus we conclude that

(2.32) 8,(t) < 4m 4 18,,(s) ds.

Note that 8,,(t) < Mom. By induction one can show that

(2.33) 8,n(t) < 4 k( m + k - 1)! k for k=0.1 ,

For T < 1/4Mo , the right-hand side of (2.33) tends to zero as k -- oc. Hence
,(t) - 0. This proves the theorem for the case I.

Case II: a is a rational number, a = m/n. We assume that Irn/i < 1. Let us
choose initial data of type a to be

Ua(x, y,O) = sin(27r(m + n)y) + 1.0,

V(x, y,O) = cos(2r(m - n)y) + 1.0,

W,(x, y,O) = 8.0(1 + 0.5 sin(41rny)),
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and choose initial data of type b to be

Ub(x, y,U) = sin(27r(m + n)y) + 1.0,

Vb(x, y,O) = cos(21(m - n)y) + 1.0,

Wb(x, y,0) = 8.0(1 + 0.5 cos(41rny)).

Then equalities (2.28a-c) are satisfied at time t = 0. However, direct computa-
tion shows that

f'Wa(X, Y,0) n  U(x, y + (r/n - )z,0)

d V,(x, y + (m/n + 1)z.0) dz) dv 9.0,

and

((X yO)n UI(x, y + (m/n - 1)z.0)

* Vb(x, Y + (m/n + 1)z,0) dz) di = 8.0.

Thus for the above choices of initial data, we geta a O lwW(X ,t2

(2.34) - + a-)f (W(x, Y t
)2 Wb(x, y') 2 )d y = 2.0 at t= 0,

and we conclude from (2.34) that

fo(W(X, y, t) 2 - Wb(x, y, 1)2)dy>O for t>0small.

Therefore (2.28c) cannot be true for all t > 0. This compietes the proof of
Theorem 2.5.

3. Discrete Boltzmann Equations with Multiple Scale Initial Data

We choose the simple Carleman model to illustrate the results. Generalization
to more complicated models follows directly. The Carleman equations are given
as follows (see [6]):

du du
(3.1 a) --7t + -x uX - = 0,

av dv(3. 1b) Ot V a + V 2 - 2  0 .

:l~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~~~T n mnmmmmm mmmmnlm nmu il nn m
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We assume that the initial values are given by
x x vxO ox-

(3.2) u(x,O) = U 0 X, -), v(x0)= , ±,

where u0 (x, yl, y2 ) and vo(x, Y1, Y2) are 1-periodic functions in each v variable.
Case 1: e2/e 1 - 0 as '2 -* 0. The homogenized equations for (3.1)-(3.2) are

given by

(3.3a) - + a + - V(x, Y, Y2, t)2 d dy2 =0(t ax 0 fo0

(3.3b) at ax + V - Ux, Y1, Y2, t) 2 d y 2 = 0,

with initial data

(3.4) U(x, Y1, Y2,0) = u 0 (x, I. v2), V(x, Y1, Y21O) = v0(X, Y1, Y2).

Case 2: e1 /e 2 -- a, an irrational number, and le1/e 2 - al < c(el)r with r > 1.
Then the homogenized equations for (3.1)-(3.2) are given by (3.3)-(3.4), the same
homogenized equations as for the case 1.

Case 3: E/E, -* m/n * 0, and 1e1/E 2 - m/ni < c(f,)r with r > 1. Then the
homogenized equations for (3.1)-(3.2) are different from (3.3)-(3.4). They are
given by

au au + 2 _1f (,) _=(3.5a) +U OU z, fol)"
W--+ T + u  - n V0 ''mn~')& O

(3.5b) aV V + V2 _ 1 U(x, z,(m/n)z, t) 2 dz =0,

with initial data

(3.6) U(x, Y1 , Y2,O) = Uo(X, YI' Y2), V(x. Y1, Y2, 0
) = o(x. Yl. Y2)"

THEOREM 3.1. Suppose that Uo(X, VY, Y2), v0(x, ., Y2) are bounded, non-

negative and continuously differentiable. Then we have

U(X, t) U x t xt t- as El F2 - 0

v(xt)- V x, xt x 11 ) 0 as e,, F, - 0,

strongly in the L'-norm.
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Remark 3.1. The above homogenization results can be generalized to the
case where the initial data are of finitely many scales. For instances, if the initial
values for (3.1) are given by

u(x,O) = "o x, x x x

V (x,0) = x, $, -, X,,

and if e1/e 2 -- m/n * 0, E 3 /E 2 - 0, then the homogenized equations will be

au a 1)2dz 2 dzi = 0du+a U2 
- !jf 1 

oIV(x, zj, (m/n)zl, Z2, -Z zl=0

dv av + V2_ fI, , z1, (m/n)z, Z2, dZ2 dZ1 = 0,
djT _ x n - o

with initial dat

U(x, Yi, Y2, Y3,0) = Uo(X, Yl, Y2, Y3),

V(x, Y1, Y2, Y3, 0 ) = V0 (x, Y1, Y2, Y3)-

To prove Theorem 3.1, we need a few technical lemmas.

LEMMA 3.1. Suppose that f(x, y, z) is continuously differentiable and is 1-peri-
odic in y and z. Assume that E2/r, -* 0 as E -- 0, then, for any constants, a, b
and x.,

(3.7)

u-. ( f(t(x ' X, x 0 ) - f 1 fa ) (x, y, z) dydz) dx = 0.

Proof: Arguing as in Lemma 2.2, we need only to prove the lemma in the
case when f is independent of the first variable. We assume for simplicity that f
has been normalized so that

(3.8) f1 fof(y, z) dydz = 0.

f 0
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For simplicity, we let x0 = 0. By change of variable, the left-hand side of (3.7)
becomes

b a f, M) dx x b a j f dz)d

(3.9)

+ b L ( ±x - f(x, z) dz) dx.-b- a fa/ , E2

Since f(y, z) is assumed to be 1-periodic in y and z, the first term on the
right-hand side of (3.9) is bounded by cE, in light of (3.8). Define

g(y,z) =f(y,1z) - f(y, z) dz.

Then g(y, z) is 1-periodic in z and satisfies fog(y, z) dz = 0. The last term in
(3.9) is then bounded by

(3.10) elfb/flg(X, Lx)dx sup f"+19x, ,, ) dx +0(E).
b a/falF E2 n

Applying Lemma 2.1 to f,,' +lg(x, x/(e2/el)) dx, we conclude that the left-hand
side of (3.9) converges to zero as e1 - 0. This completes the proof of Lemma 3.1.

LEMMA 3.2. Suppose that f (x, y, z) is continuously differentiable and is 1-peri-
odic in y and z. Assume that E1/E 2 = a + O((EI)r) with a 0 0 and r > 1: then,
for any constants a, b and x0,

lim b I a jfx, x x 0o dxF , - 0 f a fl ' -2

(3.11) b I fbf If f lf(x, y, z) dydzdx if a is irrational,

{ ba fn f(x,z, (m/n)z)dzdx ifa=m/n.
ba n0

Proof: Arguing as in Lemma 2.2, we need only to prove the lemma in the
case when f is independent of the first variable. For simplicity, we assume
x0 = 0. By change of variable, we obtain

I _ff(x XXdx b= _l f/l,,f(y, dy)dVb a a eI 'E1  b a Oa/ r,"

(3.12)

+b ela ja/,( f(y, )y) f (yay)) dy.
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The second term on the right-hand side of (3.12) is bounded by

E, f, ei(L (E) - f (Y ay)) 4Y

(3.13)
CE1  fh/ l , - a ,y : Ca d

b - /, a ae ylE

For the first term on the right-hand side of (3.12), if a is irrational, Lemma 2.2
implies

(3.14),rn b--- E , fl(y, ay) dy =ffIf(y, z) dydz.
,,0b-a fa1.1  00(

If a = m/n, then f(y, (m/n)y) is an n-periodic function in y. Thus we have

(3.15) mirn E , f jb/ ,)y) = If(y,(--) y) dy.

Lemma 3.2 then follows from (3.10)-(3.15).

Proof of Theorem 3.1: The solutions of the Carleman equations are known
to be bounded for all time for bounded non-negative initial data (see [10], [13]).
Thus Theorem 3.1 can be proved by using the similar techniques we use in the
proof of Theorem 2.1 and the two lemmas above. We omit the proof.

Remark 3.1. If EI/E 2 - a * 0 and the rate of convergence is of order
0((El)r) with r < 1, then Lemma 3.2 may not hold in general.

For examples, suppose that E1/E 2 = 1 + E1 (r = 1). We take f(y. z)=
cos(217y)sin(2irz), x0 = 0, a = 0, b = -. Then a direct calculation shows that

2 f 1/ 2f(- ) dx - f If(z, z) dz = 1/7r + 0(E1 ) * 0.

4. General Model for a Gas with Discrete Velocity Distribution

Consider a gas composed of identical particles of mass m. The velocities of
these particles are restricted to a given finite set of p vectors: uI, .- ,uP
N, = N,(x, t) denotes the number density of particles with velocity u, at the point
x and at the time t.

We consider the binary collisions only. Denote by u, and u. the velocities of
two molecules before an encounter, after the encounter these molecules have
velocities u k and u, . They must satisfy the following two relations expressing the



HOMOGENIZATION FOR SEMILINEAR HYPERBOLIC SYSTEMS 491

conservation of momentum and the conservation of energy:

U, + Uj = U k + U/,

IuIl2 + lull 2 = IUkl 2 + 1u1
2 .

A transition probability AkI is associated with the collision "u,, u1 to uA, u1 '.

A,'JN,N is the number of collisions u, u, to uk , u, per unit time and unit
volume, satisfying the particle indistinguishability:

A ki = Ak =A 1k

'i Li ji*

Then the Boltzmann equation is replaced by a system of p nonlinear partial
differential equations (see [10]):

(4.1) -N- + u,,. vN, = (A 'NkN, - <,A,), i = .2.. p.
). k,I

We are especially interested in the case when the initial values are of the
form:

(4.2) N,o() - (x, ), i =1,2. ,

where 0,(x, y) are 1-periodic functions in each component of y.

ASSUMPTION. Let t yi, 1 < i < n) be a sequence of non-zero numbers.
Suppose that ( yj," " ", yvk ) is the largest linearly independent set of ( -, , ,-y }
among the integers in the following sense:

We say that (y:,..., yk is linearly independent among integers provided
m ' (1,. •., Yk) = 0 for some integer-valued vector m implies that m = 0.

Since { yl,. •, Tk } is the largest linearly independent set of { y,. •,. }, there
exist integers I and m such that

I k

(4.3) y, = - F2 l,. for i= k+ .. ,n.
i j-l

We denote by Nk the smallest common integral multiple of mk 1,'", m .

LEMMA 4.1. Suppose f(xl,. . , x,,) is a continuous function, and is 1-periodic
in each component. Let f-y,, 1 < i < n) be defined as in the above assumption.
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Then we have
Case 1: k = 1,

lim- fTxi + ylt,..., x + yn) dt

(4.4)
JNI/r lf(x 1 + 71t,' -,Xn + Ynt) dt;

Case 2: k n,

lira -T f(x +-yt,. , x, + 'Y,t) dt

(4.5)

-fo flf(x,,.. x ,,)dx,  dx,,"
0o 0

Case 3: 1 < k <n,

lim f J x, i + y:i.---, x, + yj) dt

T 1 fo kN~

(4.6) (Nk)k " " 0  1 + ' A +

k lk l k 1, In

Xk+* + M .. I. , X, + Y dz, ... dz,.

Proof: We only give the proof in the case 1 < k < n. The other cases can be
proved similarly. Let M = Nk/TI. We have

I1 fH f - f(xI + 71t,., X,, + Yt) dt

(4.7) 
- TIMI-I

- jM 'fXl + 
l  ''' x,' + Y t) dt + 0(1/T ) .

jM

By change of variable t = z, + jM, we have

H E f f x 1 + yIZ 1 , X2 + y2ZI +jy 2M, xk + *Ykzt +jYM.
j=0 0

Xk+ "" k+( +M)

m2 mk+I

in ~IM ) z + 0(l1T).

m=2 )
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Define function g(z 2,. .., Zk) by

g(Z2,''. Zk) M(x + YIZI, X 2 + 7 2 Z + Z 2 ,', Xk + 'ykz + Z1.

k Ik + , r

Xk+l + "k + + -k+- 1
rn=2 mkl

"" ~In 
mX + nZ.+ dz .

rn2 m n r

Then g(z 2 ,. ., zk) is a continuous Nk-pernodic function in each zm for 2 < m < k,
and

I [T/MI- IH =T , g9072M, . . . ,I jyAM) + O(11T).

j=0

Suppose that there exists an integer-valued vector m ( Z k such that

M 2 (y 2 M) + - +mk(YkM) = - Z.

Recall that M = Nk/yI. So we have

r 1', + m 2 Nky 2 + .. +MkNkyk = 0.

The assumption on {y,; 1 < i < k} implies that in, = 0 for I < i < k. Thus
we conclude that {yM; 2 < i < k } are linearly independent among integers in
the sense of [1). Applying the theorem of "Ergodic Translation of Tori" in [1] to
g(z 2,.. ., zk) with o - (y 2M, . ', ykM), we obtain

(4.8) lim H = ' foJ N g 'r- (Nk) k  fg(Z2'" . .Izk) dz2  dzk"

Thus we prove (4.6) by expressing the right-hand side of (4.8) in terms of f. This
completes the proof of the lemma.

Now we can define the homogenized equations for the general discrete
Boltzmann equations.

Suppose f(yl,..., y) is a continuous 1-periodic function in y,, 1 < i < n.
Let y = (yl, - ", yn).

DEFINITION. Define functional F[f; yj as the limiting function on the right-
hand side of (4.4), (4.5) and (4.6) corresponding to the cases k = 1, k = n or
1 < k < n, respectively.
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For x and t fixed, we regard M(x,y, t) as a function of y alone. Define the
functional G,( M,, Mk) as follows:

MM k  if j= k=i

M1F[M,; (u, - u,)] if j = i. k * i.
G,(Mj(x'y.t) Mk(Xy.t))= MkF[MI' (u, - u) ifj * i, k i

F[MjMk; (U, - uju, - uk)] if j * i, k * i.

where F[MjMk; (u, - u1 u, - uk)] corresponds to the limiting function in
Lemma 4.1 with f given by

f(y + 't,z + 0t) = Mj(-,y + (i,- u )t. )M(.z + (u, - Uk)t, .).

Then the homogenized equations are given by
aM,1 M)

(4.9) + u," vM, = (A',IG,(M,. M,) - A,',G,(M,, M,)).dt 2 k. I

with initial values

(4.10) M,(x,y,0) = 4(x.y), i 1.-.-. p.

THEOREM 4.1. Let M, be the solutions of the homogeni:ed equations
(4.9)-(4.10). Then we have

N (x, t) -M,(xX tU -0 as F- 0,
i= 1 X E t L-(R ;[0, T1)

provided that equations (4.1)-(4.2) and (4.9)-(4.10) have bounded solutions for
0 t < T.

Proof of Theorem 4.1: Using Lemma 4.1, we can prove Theorem 4.1 in a
similar way to Theorem 2.1. We omit the proof.

Remark 4.1. The global existence theory of equations (4.1)-(4.2) has been
investigated by several authors (see e.g. [121, [101,[51,1131 and [21). The general
results in [101 indicate that the bounded global solutions exist for long time if the
initial data are small in some sense. The local existence of the homogenized
equations (4.9) can be obtained by classical analysis. By combining the known
global existence results for (4.1) with Theorem 4.1, we can show that bounded
global solutions of (4.9) exist as long as the global solutions of (4.1) exist.

Remark 4.2. The techniques we use here in deriving the homogenized
equations can be used for more complicated models. For examples, our tech-
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niques will apply to the semi-linear hyperbolic systems of the form

with oscillatory initial data

N,(x.0) Ni A (x X j. X 1, 2, k.

if the u, are constant vectors and the fare smooth and separable functions in
N, j =1,.... k.
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